The Enzyme Database

Displaying entries 51-100 of 1275.

<< Previous | Next >>    printer_iconPrintable version

EC 3.2.1.198     Relevance: 100%
Accepted name: α-mannan endo-1,2-α-mannanase
Reaction: Hydrolysis of the terminal α-D-mannosyl-(1→3)-α-D-mannose disaccharide from α-D-mannosyl-(1→3)-α-D-mannosyl-(1→2)-α-D-mannosyl-(1→2)-α-D-mannosyl side chains in fungal cell wall α-mannans.
Systematic name: α-mannan 1,2-[α-D-mannosyl-(1→3)-α-D-mannose] hydrolase
Comments: The enzyme, characterized from the gut bacteria Bacteroides thetaiotaomicron and Bacteroides xylanisolvens, can also catalyse the reaction of EC 3.2.1.130, glycoprotein endo-α-1,2-mannosidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Hakki, Z., Thompson, A.J., Bellmaine, S., Speciale, G., Davies, G.J. and Williams, S.J. Structural and kinetic dissection of the endo-α-1,2-mannanase activity of bacterial GH99 glycoside hydrolases from Bacteroides spp. Chemistry 21 (2015) 1966–1977. [DOI] [PMID: 25487964]
2.  Cuskin, F., Lowe, E.C., Temple, M.J., Zhu, Y., Cameron, E.A., Pudlo, N.A., Porter, N.T., Urs, K., Thompson, A.J., Cartmell, A., Rogowski, A., Hamilton, B.S., Chen, R., Tolbert, T.J., Piens, K., Bracke, D., Vervecken, W., Hakki, Z., Speciale, G., Munoz-Munoz, J.L., Day, A., Pena, M.J., McLean, R., Suits, M.D., Boraston, A.B., Atherly, T., Ziemer, C.J., Williams, S.J., Davies, G.J., Abbott, D.W., Martens, E.C. and Gilbert, H.J. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517 (2015) 165–169. [DOI] [PMID: 25567280]
[EC 3.2.1.198 created 2016]
 
 
EC 2.7.8.32     Relevance: 99.9%
Accepted name: 3-O-α-D-mannopyranosyl-α-D-mannopyranose xylosylphosphotransferase
Reaction: UDP-xylose + 3-O-α-D-mannopyranosyl-α-D-mannopyranose = UMP + 3-O-(6-O-α-D-xylosylphospho-α-D-mannopyranosyl)-α-D-mannopyranose
Glossary: O-α-D-xylosylphospho-α-D-mannopyranosyl)-α-D-mannopyranose = O-α-D-xylosylphosphono-α-D-mannopyranosyl)-α-D-mannopyranose
Other name(s): XPT1
Systematic name: UDP-D-xylose:3-O-α-D-mannopyranosyl-α-D-mannopyranose xylosylphosphotransferase
Comments: Mn2+ required for activity. The enzyme is specific for mannose as an acceptor but is flexible as to the structural context of the mannosyl disaccharide.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Reilly, M.C., Levery, S.B., Castle, S.A., Klutts, J.S. and Doering, T.L. A novel xylosylphosphotransferase activity discovered in Cryptococcus neoformans. J. Biol. Chem. 284 (2009) 36118–36127. [DOI] [PMID: 19864415]
[EC 2.7.8.32 created 2011]
 
 
EC 2.4.1.381     Relevance: 99.8%
Accepted name: dTDP-Rha:α-D-Man-(1→3)-α-D-Gal diphosphoundecaprenol α-1,2-rhamnosyltransferase
Reaction: dTDP-β-L-rhamnose + α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = dTDP + α-L-Rha-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und
Glossary: α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
α-L-Rha-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-α-D-Gal-PP-Und = α-L-rhamnopyranosyl-(1→2)-α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaQ (gene name); rfbQ (gene name)
Systematic name: dTDP-β-L-rhamnose:α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 2III-α-rhamnosyltransferase (configuration-inverting)
Comments: The enzyme, present in Salmonella strains that belong to group C2, participates in the biosynthesis of the repeat unit of O antigens produced by these strains.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Brown, P.K., Romana, L.K. and Reeves, P.R. Cloning of the rfb gene cluster of a group C2 Salmonella strain: comparison with the rfb regions of groups B and D. Mol. Microbiol. 5 (1991) 1873–1881. [DOI] [PMID: 1722557]
2.  Brown, P.K., Romana, L.K. and Reeves, P.R. Molecular analysis of the rfb gene cluster of Salmonella serovar muenchen (strain M67): the genetic basis of the polymorphism between groups C2 and B. Mol. Microbiol. 6 (1992) 1385–1394. [DOI] [PMID: 1379320]
3.  Liu, D., Haase, A.M., Lindqvist, L., Lindberg, A.A. and Reeves, P.R. Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: identification and characterization of transferase genes of groups B, C2, and E1. J. Bacteriol. 175 (1993) 3408–3413. [DOI] [PMID: 7684736]
4.  Zhao, X., Dai, Q., Jia, R., Zhu, D., Liu, M., Wang, M., Chen, S., Sun, K., Yang, Q., Wu, Y. and Cheng, A. two novel Salmonella bivalent vaccines confer dual protection against two Salmonella serovars in mice. Front Cell Infect Microbiol 7:391 (2017). [DOI] [PMID: 28929089]
[EC 2.4.1.381 created 2021]
 
 
EC 2.4.1.138     Relevance: 99.7%
Accepted name: mannotetraose 2-α-N-acetylglucosaminyltransferase
Reaction: UDP-N-acetyl-α-D-glucosamine + α-D-Man-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-D-Man = UDP + α-D-Man-(1→3)-[α-D-GlcNAc-(1→2)]-α-D-Man-(1→2)-α-D-Man-(1→2)-D-Man
Other name(s): α-N-acetylglucosaminyltransferase; uridine diphosphoacetylglucosamine mannoside α1→2-αcetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:mannotetraose α-N-acetyl-D-glucosaminyltransferase
Systematic name: UDP-N-acetyl-α-D-glucosamine:α-D-mannosyl-(1→3)-α-D-mannosyl-(1→2)-α-D-mannosyl-(1→2)-D-mannose α-N-acetyl-D-glucosaminyltransferase (configuration-retaining)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 81032-47-5
References:
1.  Douglas, R.H. and Ballou, C.E. Purification of an α-N-acetylglucosaminyltransferase from the yeast Kluyveromyces lactis and a study of mutants defective in this enzyme activity. Biochemistry 21 (1982) 1561–1570. [PMID: 6211189]
[EC 2.4.1.138 created 1984]
 
 
EC 2.4.1.24     Relevance: 98.8%
Accepted name: 1,4-α-glucan 6-α-glucosyltransferase
Reaction: Transfers an α-D-glucosyl residue in a (1→4)-α-D-glucan to the primary hydroxy group of glucose, free or combined in a (1→4)-α-D-glucan
Other name(s): oligoglucan-branching glycosyltransferase; 1,4-α-D-glucan 6-α-D-glucosyltransferase; T-enzyme; D-glucosyltransferase; 1,4-α-D-glucan:1,4-α-D-glucan(D-glucose) 6-α-D-glucosyltransferase
Systematic name: (1→4)-α-D-glucan:(1→4)-α-D-glucan(D-glucose) 6-α-D-glucosyltransferase
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 9030-12-0
References:
1.  Abdullah, M. and Whelan, W.J. Synthesis of α-1:6-glucosidic linkages by a transglycosylase from potato. Biochem. J. 75 (1960) 12P.
2.  Barker, S.A. and Carrington, T.R. Studies of Aspergillus niger. Part II. Transglycosidation by Aspergillus niger. J. Chem. Soc. (Lond.) (1953) 3588–3593.
3.  Saroja, K., Venkataraman, R. and Giri, K.V. Transglucosidation in Penicillium chrysogenum Q-176. Isolation and identification of the oligosaccharide. Biochem. J. 60 (1955) 399–403. [PMID: 13239572]
[EC 2.4.1.24 created 1965]
 
 
EC 3.2.1.28     Relevance: 98.7%
Accepted name: α,α-trehalase
Reaction: α,α-trehalose + H2O = β-D-glucose + α-D-glucose
Other name(s): trehalase
Systematic name: α,α-trehalose glucohydrolase
Comments: The enzyme is an anomer-inverting glucosidase that catalyses the hydrolysis of the α-glucosidic O-linkage of α,α-trehalose, releasing initially equimolar amounts of α- and β-D-glucose. It is widely distributed in microorganisms, plants, invertebrates and vertebrates.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9025-52-9
References:
1.  Myrbäck, K. and Örtenblad, B. Trehalose und Hefe. II. Trehalasewirkung von Hefepräparaten. Biochem. Z. 291 (1937) 61–69.
2.  Kalf, G.F. and Rieder, S.V. The preparation and properties of trehalase. J. Biol. Chem. 230 (1958) 691–698. [PMID: 13525386]
3.  Hehre, E.J., Sawai, T., Brewer, C.F., Nakano, M. and Kanda, T. Trehalase: stereocomplementary hydrolytic and glucosyl transfer reactions with α- and β-D-glucosyl fluoride. Biochemistry 21 (1982) 3090–3097. [PMID: 7104311]
4.  Mori, H., Lee, J.H., Okuyama, M., Nishimoto, M., Ohguchi, M., Kim, D., Kimura, A. and Chiba, S. Catalytic reaction mechanism based on α-secondary deuterium isotope effects in hydrolysis of trehalose by European honeybee trehalase. Biosci. Biotechnol. Biochem. 73 (2009) 2466–2473. [DOI] [PMID: 19897915]
[EC 3.2.1.28 created 1961, modified 2012]
 
 
EC 3.2.1.207     Relevance: 98.3%
Accepted name: mannosyl-oligosaccharide α-1,3-glucosidase
Reaction: (1) Glc2Man9GlcNAc2-[protein] + H2O = GlcMan9GlcNAc2-[protein] + β-D-glucopyranose
(2) GlcMan9GlcNAc2-[protein] + H2O = Man9GlcNAc2-[protein] + β-D-glucopyranose
Glossary: Glc2Man9GlcNAc2-[protein] = {α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-N-Asn-[protein]
GlcMan9GlcNAc2-[protein] = {α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-N-Asn-[protein]
Man9GlcNAc2-[protein] = {α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc}-N-Asn-[protein]
Other name(s): ER glucosidase II; α-glucosidase II; trimming glucosidase II; ROT2 (gene name); GTB1 (gene name); GANAB (gene name); PRKCSH (gene name)
Systematic name: Glc2Man9GlcNAc2-[protein] 3-α-glucohydrolase (configuration-inverting)
Comments: This eukaryotic enzyme cleaves off sequentially the two α-1,3-linked glucose residues from the Glc2Man9GlcNAc2 oligosaccharide precursor of immature N-glycosylated proteins.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Trombetta, E.S., Simons, J.F. and Helenius, A. Endoplasmic reticulum glucosidase II is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL-containing subunit. J. Biol. Chem. 271 (1996) 27509–27516. [DOI] [PMID: 8910335]
2.  Ziak, M., Meier, M., Etter, K.S. and Roth, J. Two isoforms of trimming glucosidase II exist in mammalian tissues and cell lines but not in yeast and insect cells. Biochem. Biophys. Res. Commun. 280 (2001) 363–367. [DOI] [PMID: 11162524]
3.  Wilkinson, B.M., Purswani, J. and Stirling, C.J. Yeast GTB1 encodes a subunit of glucosidase II required for glycoprotein processing in the endoplasmic reticulum. J. Biol. Chem. 281 (2006) 6325–6333. [DOI] [PMID: 16373354]
4.  Mora-Montes, H.M., Bates, S., Netea, M.G., Diaz-Jimenez, D.F., Lopez-Romero, E., Zinker, S., Ponce-Noyola, P., Kullberg, B.J., Brown, A.J., Odds, F.C., Flores-Carreon, A. and Gow, N.A. Endoplasmic reticulum α-glycosidases of Candida albicans are required for N glycosylation, cell wall integrity, and normal host-fungus interaction. Eukaryot Cell 6 (2007) 2184–2193. [DOI] [PMID: 17933909]
[EC 3.2.1.207 created 2018]
 
 
EC 2.3.1.191     Relevance: 96.8%
Accepted name: UDP-3-O-(3-hydroxyacyl)glucosamine N-acyltransferase
Reaction: a (3R)-3-hydroxyacyl-[acyl-carrier protein] + a UDP-3-O-[(3R)-3-hydroxyacyl]-α-D-glucosamine = a UDP-2-N,3-O-bis[(3R)-3-hydroxyacyl]-α-D-glucosamine + a holo-[acyl-carrier protein]
For diagram of lipid IVA biosynthesis, click here
Other name(s): lpxD (gene name); UDP-3-O-acyl-glucosamine N-acyltransferase; UDP-3-O-(R-3-hydroxymyristoyl)-glucosamine N-acyltransferase; acyltransferase LpxD; acyl-ACP:UDP-3-O-(3-hydroxyacyl)-GlcN N-acyltransferase; firA (gene name); (3R)-3-hydroxymyristoyl-[acyl-carrier protein]:UDP-3-O-[(3R)-3-hydroxymyristoyl]-α-D-glucosamine N-acetyltransferase; UDP-3-O-(3-hydroxymyristoyl)glucosamine N-acyltransferase; (3R)-3-hydroxytetradecanoyl-[acyl-carrier protein]:UDP-3-O-[(3R)-3-hydroxytetradecanoyl]-α-D-glucosamine N-acetyltransferase
Systematic name: (3R)-3-hydroxyacyl-[acyl-carrier protein]:UDP-3-O-[(3R)-3-hydroxyacyl]-α-D-glucosamine N-acyltransferase
Comments: The enzyme catalyses a step of lipid A biosynthesis. LpxD from Escherichia coli prefers (3R)-3-hydroxytetradecanoyl-[acyl-carrier protein] [3], but it does not have an absolute specificity for 14-carbon hydroxy fatty acids, as it can transfer other fatty acids, including odd-chain fatty acids, if they are available to the organism [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Kelly, T.M., Stachula, S.A., Raetz, C.R. and Anderson, M.S. The firA gene of Escherichia coli encodes UDP-3-O-(R-3-hydroxymyristoyl)-glucosamine N-acyltransferase. The third step of endotoxin biosynthesis. J. Biol. Chem. 268 (1993) 19866–19874. [PMID: 8366125]
2.  Buetow, L., Smith, T.K., Dawson, A., Fyffe, S. and Hunter, W.N. Structure and reactivity of LpxD, the N-acyltransferase of lipid A biosynthesis. Proc. Natl. Acad. Sci. USA 104 (2007) 4321–4326. [DOI] [PMID: 17360522]
3.  Bartling, C.M. and Raetz, C.R. Steady-state kinetics and mechanism of LpxD, the N-acyltransferase of lipid A biosynthesis. Biochemistry 47 (2008) 5290–5302. [DOI] [PMID: 18422345]
4.  Bainbridge, B.W., Karimi-Naser, L., Reife, R., Blethen, F., Ernst, R.K. and Darveau, R.P. Acyl chain specificity of the acyltransferases LpxA and LpxD and substrate availability contribute to lipid A fatty acid heterogeneity in Porphyromonas gingivalis. J. Bacteriol. 190 (2008) 4549–4558. [DOI] [PMID: 18456814]
5.  Bartling, C.M. and Raetz, C.R. Crystal structure and acyl chain selectivity of Escherichia coli LpxD, the N-acyltransferase of lipid A biosynthesis. Biochemistry 48 (2009) 8672–8683. [DOI] [PMID: 19655786]
6.  Badger, J., Chie-Leon, B., Logan, C., Sridhar, V., Sankaran, B., Zwart, P.H. and Nienaber, V. Structure determination of LpxD from the lipopolysaccharide-synthesis pathway of Acinetobacter baumannii. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 69 (2013) 6–9. [DOI] [PMID: 23295477]
7.  Kroeck, K.G., Sacco, M.D., Smith, E.W., Zhang, X., Shoun, D., Akhtar, A., Darch, S.E., Cohen, F., Andrews, L.D., Knox, J.E. and Chen, Y. Discovery of dual-activity small-molecule ligands of Pseudomonas aeruginosa LpxA and LpxD using SPR and X-ray crystallography. Sci. Rep. 9:15450 (2019). [DOI] [PMID: 31664082]
[EC 2.3.1.191 created 2010, modified 2021]
 
 
EC 2.4.1.60     Relevance: 96.5%
Accepted name: CDP-abequose:α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und α-1,3-abequosyltransferase
Reaction: CDP-α-D-abequose + α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und = CDP + α-D-Abe-(1→3)-α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und
Glossary: D-abequose = 3,6-deoxy-D-xylo-hexose = 3,6-deoxy-D-galactose = 3-deoxy-D-fucose
α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und = α-D-mannopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
α-D-Abe-(1→3)-α-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und = α-D-abequopyranosyl-(1→3)-α-D-mannopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaV (gene name); rfbV (gene name); trihexose diphospholipid abequosyltransferase; abequosyltransferase (ambiguous); CDP-α-D-abequose:Man(α1→4)Rha(α1→3)Gal(β-1)-diphospholipid D-abequosyltransferase
Systematic name: CDP-α-D-abequose:α-D-mannopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 3III-α-abequosyltransferase (configuration retaining)
Comments: The enzyme from Salmonella participates in the biosynthesis of the repeat unit of O antigens produced by strains that belong to the A, B and D1-D3 groups. The enzyme is able to transfer abequose, paratose, or tyvelose, depending on the availability of the specific dideoxyhexose in a particular strain.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37277-67-1
References:
1.  Osborn, M.J. and Weiner, I.M. Biosynthesis of a bacterial lipopolysaccharide. VI. Mechanism of incorporation of abequose into the O-antigen of Salmonella typhimurium. J. Biol. Chem. 243 (1968) 2631–2639. [PMID: 4297268]
2.  Liu, D., Lindqvist, L. and Reeves, P.R. Transferases of O-antigen biosynthesis in Salmonella enterica: dideoxyhexosyltransferases of groups B and C2 and acetyltransferase of group C2. J. Bacteriol. 177 (1995) 4084–4088. [DOI] [PMID: 7541787]
[EC 2.4.1.60 created 1972, modified 2012, modified 2021]
 
 
EC 2.3.1.122     Relevance: 96.5%
Accepted name: trehalose O-mycolyltransferase
Reaction: 2 α,α-trehalose 6-mycolate = α,α-trehalose + α,α-trehalose 6,6′-bismycolate
Other name(s): α,α’-trehalose 6-monomycolate:α,α’-trehalose mycolyltransferase; α,α’-trehalose-6-mycolate:α,α’-trehalose-6-mycolate 6′-mycolyltransferase
Systematic name: α,α-trehalose-6-mycolate:α,α-trehalose-6-mycolate 6′-mycolyltransferase
Comments: Catalyses the exchange of mycolic acid between trehalose, trehalose mycolate and trehalose bismycolate. Trehalose 6-palmitate can also act as donor.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 111694-11-2
References:
1.  Sathyamoorthy, N. and Takayama, K. Purification and characterization of a novel mycolic acid exchange enzyme from Mycobacterium smegmatis. J. Biol. Chem. 262 (1987) 13417–13423. [PMID: 3654621]
[EC 2.3.1.122 created 1990]
 
 
EC 2.4.1.393     Relevance: 95.9%
Accepted name: MMP α-(1→4)-mannosyltransferase
Reaction: GDP-α-D-mannose + [3-O-methyl-α-D-mannosyl-(1→4)]n-3-O-methyl-α-D-mannose = α-D-mannosyl-(1→4)-[3-O-methyl-α-D-mannosyl-(1→4)]n-3-O-methyl-α-D-mannose + GDP
Glossary: MMP = α-D-mannosyl-(1→4)-[3-O-methyl-α-D-mannosyl-(1→4)]n-1-O,3-O-dimethyl-α-D-mannose
Other name(s): manT (gene name)
Systematic name: GDP-α-D-mannose:[3-O-methyl-α-D-mannosyl-(1→4)]n-3-O-methyl-α-D-mannose [(1→4)-α-D-mannosyl]transferase
Comments: The enzyme, present in mycobacterial species that produce a 3-O-methylmannose polysaccharide (MMP), is involved in recycling and biosynthesis of the polymer. The enzyme has the highest activity with 3-O-methylated mannosides with 4-6 residues. The residue at the reducing end of the substrate is often dimethylated, with the second methyl group attached at the O-1 position.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Maranha, A., Costa, M., Ripoll-Rozada, J., Manso, J.A., Miranda, V., Mendes, V.M., Manadas, B., Macedo-Ribeiro, S., Ventura, M.R., Pereira, P.JB. and Empadinhas, N. Self-recycling and partially conservative replication of mycobacterial methylmannose polysaccharides. Commun Biol 6:108 (2023). [DOI] [PMID: 36707645]
[EC 2.4.1.393 created 2023]
 
 
EC 3.2.1.130     Relevance: 95.5%
Accepted name: glycoprotein endo-α-1,2-mannosidase
Reaction: GlcMan9GlcNAc2-[protein] + H2O = Man8GlcNAc2-[protein] (isomer 8A1,2,3B1,2) + α-D-glucosyl-(1→3)-α-D-mannopyranose
Glossary: GlcMan9GlcNAc2-[protein] = {α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc}-N-Asn-[protein]
Man8GlcNAc2-[protein] (isomer 8A1,2,3B1,2) = {α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc}-N-Asn-[protein]
Other name(s): glucosylmannosidase; endo-α-D-mannosidase; endo-α-mannosidase; endomannosidase; glucosyl mannosidase; MANEA (gene name); glycoprotein glucosylmannohydrolase
Systematic name: glycoprotein glucosylmannohydrolase (configuration-retaining)
Comments: The enzyme catalyses the hydrolysis of the terminal α-D-glucosyl-(1→3)-D-mannosyl unit from the GlcMan9(GlcNAc)2 oligosaccharide component of N-glucosylated proteins during their processing in the Golgi apparatus. The name for the isomer is based on a nomenclature proposed by Prien et al [7].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 108022-16-8
References:
1.  Lubas, W.A. and Spiro, R.G. Golgi endo-α-D-mannosidase from rat liver, a novel N-linked carbohydrate unit processing enzyme. J. Biol. Chem. 262 (1987) 3775–3781. [PMID: 3818665]
2.  Tulsiani, D.R.P., Coleman, V.P. and Touster, O. Asparagine-linked glycoprotein biosynthesis in rat brain: identification of glucosidase I, glucosidase II, and endomannosidase (glucosyl mannosidase). Arch. Biochem. Biophys. 277 (1990) 114–121. [DOI] [PMID: 2407194]
3.  Hiraizumi, S., Spohr, U. and Spiro, R.G. Ligand affinity chromatographic purification of rat liver Golgi endomannosidase. J. Biol. Chem. 269 (1994) 4697–4700. [PMID: 8106437]
4.  Spiro, M.J., Bhoyroo, V.D. and Spiro, R.G. Molecular cloning and expression of rat liver endo-α-mannosidase, an N-linked oligosaccharide processing enzyme. J. Biol. Chem. 272 (1997) 29356–29363. [DOI] [PMID: 9361017]
5.  Hamilton, S.R., Li, H., Wischnewski, H., Prasad, A., Kerley-Hamilton, J.S., Mitchell, T., Walling, A.J., Davidson, R.C., Wildt, S. and Gerngross, T.U. Intact α-1,2-endomannosidase is a typical type II membrane protein. Glycobiology 15 (2005) 615–624. [DOI] [PMID: 15677381]
6.  Hardt, B., Volker, C., Mundt, S., Salska-Navarro, M., Hauptmann, M. and Bause, E. Human endo-α1,2-mannosidase is a Golgi-resident type II membrane protein. Biochimie 87 (2005) 169–179. [DOI] [PMID: 15760709]
7.  Prien, J.M., Ashline, D.J., Lapadula, A.J., Zhang, H. and Reinhold, V.N. The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap MS. J. Am. Soc. Mass Spectrom. 20 (2009) 539–556. [DOI] [PMID: 19181540]
[EC 3.2.1.130 created 1990, modified 2017]
 
 
EC 2.4.1.387     Relevance: 95.3%
Accepted name: isomaltosyltransferase
Reaction: (1) 2 α-isomaltosyl-(1→4)-maltotriose = α-isomaltosyl-(1→3)-α-isomaltosyl-(1→4)-maltotriose + maltotriose
(2) α-isomaltosyl-(1→3)-α-isomaltosyl-(1→4)-maltotriose = cyclobis-(1→6)-α-nigerosyl + maltotriose
Systematic name: α-isomaltosyl-(1→3)-1,4-α-D-glucan:1,4-α-D-glucan 3-α-isomaltosyltransferase
Comments: The enzyme, found in bacteria that produce cyclobis-(1→6)-α-nigerosyl, acts on the products of EC 2.4.1.24, 1,4-α-glucan 6-α;-glucosyltransferase. It catalyses the α-(1→3) transfer of the isomaltosyl moiety of one substrate to another, resulting in α-isomaltosyl-(1→3)-α-isomaltosyl-α-(1→4)-glucan formation. In addition, the enzyme catalyses the intramolecular cyclization of the product, eventually generating cyclobis-(1→6)-α-nigerosyl.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Aga, H., Maruta, K., Yamamoto, T., Kubota, M., Fukuda, S., Kurimoto, M. and Tsujisaka, Y. Cloning and sequencing of the genes encoding cyclic tetrasaccharide-synthesizing enzymes from Bacillus globisporus C11. Biosci. Biotechnol. Biochem. 66 (2002) 1057–1068. [DOI] [PMID: 12092816]
2.  Nishimoto, T., Aga, H., Mukai, K., Hashimoto, T., Watanabe, H., Kubota, M., Fukuda, S., Kurimoto, M. and Tsujisaka, Y. Purification and characterization of glucosyltransferase and glucanotransferase involved in the production of cyclic tetrasaccharide in Bacillus globisporus C11. Biosci. Biotechnol. Biochem. 66 (2002) 1806–1818. [DOI] [PMID: 12400677]
3.  Kim, Y.K., Kitaoka, M., Hayashi, K., Kim, C.H. and Cote, G.L. A synergistic reaction mechanism of a cycloalternan-forming enzyme and a D-glucosyltransferase for the production of cycloalternan in Bacillus sp. NRRL B-21195. Carbohydr. Res. 338 (2003) 2213–2220. [DOI] [PMID: 14553982]
[EC 2.4.1.387 created 2022]
 
 
EC 3.5.1.108     Relevance: 94.8%
Accepted name: UDP-3-O-acyl-N-acetylglucosamine deacetylase
Reaction: a UDP-3-O-[(3R)-3-hydroxyacyl]-N-acetyl-α-D-glucosamine + H2O = a UDP-3-O-[(3R)-3-hydroxyacyl]-α-D-glucosamine + acetate
For diagram of lipid IVA biosynthesis, click here
Other name(s): LpxC protein; LpxC enzyme; LpxC deacetylase; deacetylase LpxC; UDP-3-O-acyl-GlcNAc deacetylase; UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase; UDP-(3-O-acyl)-N-acetylglucosamine deacetylase; UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase; UDP-(3-O-(R-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase; UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetylglucosamine amidohydrolase
Systematic name: UDP-3-O-[(3R)-3-hydroxyacyl]-N-acetyl-α-D-glucosamine amidohydrolase
Comments: A zinc protein. The enzyme catalyses a committed step in the biosynthesis of lipid A.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Hernick, M., Gennadios, H.A., Whittington, D.A., Rusche, K.M., Christianson, D.W. and Fierke, C.A. UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase functions through a general acid-base catalyst pair mechanism. J. Biol. Chem. 280 (2005) 16969–16978. [DOI] [PMID: 15705580]
2.  Jackman, J.E., Raetz, C.R. and Fierke, C.A. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase of Escherichia coli is a zinc metalloenzyme. Biochemistry 38 (1999) 1902–1911. [DOI] [PMID: 10026271]
3.  Hyland, S.A., Eveland, S.S. and Anderson, M.S. Cloning, expression, and purification of UDP-3-O-acyl-GlcNAc deacetylase from Pseudomonas aeruginosa: a metalloamidase of the lipid A biosynthesis pathway. J. Bacteriol. 179 (1997) 2029–2037. [DOI] [PMID: 9068651]
4.  Wang, W., Maniar, M., Jain, R., Jacobs, J., Trias, J. and Yuan, Z. A fluorescence-based homogeneous assay for measuring activity of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase. Anal. Biochem. 290 (2001) 338–346. [DOI] [PMID: 11237337]
5.  Whittington, D.A., Rusche, K.M., Shin, H., Fierke, C.A. and Christianson, D.W. Crystal structure of LpxC, a zinc-dependent deacetylase essential for endotoxin biosynthesis. Proc. Natl. Acad. Sci. USA 100 (2003) 8146–8150. [DOI] [PMID: 12819349]
6.  Mochalkin, I., Knafels, J.D. and Lightle, S. Crystal structure of LpxC from Pseudomonas aeruginosa complexed with the potent BB-78485 inhibitor. Protein Sci. 17 (2008) 450–457. [DOI] [PMID: 18287278]
[EC 3.5.1.108 created 2010, modified 2021]
 
 
EC 3.2.1.106     Relevance: 94%
Accepted name: mannosyl-oligosaccharide glucosidase
Reaction: Glc3Man9GlcNAc2-[protein] + H2O = Glc2Man9GlcNAc2-[protein] + β-D-glucopyranose
Glossary: Glc3Man9GlcNAc2 = [α-D-Glc-(1→2)-α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-{α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)}-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc]-N-Asn-[protein]
Glc2Man9GlcNAc2-[protein] = [α-D-Glc-(1→3)-α-D-Glc-(1→3)-α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-{α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)}-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-β-D-GlcNAc]-N-Asn-[protein]
Other name(s): Glc3Man9NAc2 oligosaccharide glucosidase; trimming glucosidase I; CWH41 (gene name); MOGS (gene name); mannosyl-oligosaccharide glucohydrolase
Systematic name: Glc3Man9GlcNAc2-[protein] glucohydrolase (configuration-inverting)
Comments: This enzyme catalyses the first step in the processing of the N-glycan tetradecasaccharide precursor Glc3Man9GlcNAc2, which takes place in the endoplasmic reticulum, by removing the distal α-1,2-linked glucose residue. This and subsequent processing steps are required before complex N-glycans can be synthesized.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 78413-07-7
References:
1.  Elting, J.J., Chen, W.W. and Lennarz, J. Characterization of a glucosidase involved in an initial step in the processing of oligosaccharide chains. J. Biol. Chem. 255 (1980) 2325–2331. [PMID: 7358674]
2.  Grinna, L.S. and Robbins, P.W. Glycoprotein biosynthesis. Rat liver microsomal glucosidases which process oligosaccharides. J. Biol. Chem. 254 (1979) 8814–8818. [PMID: 479161]
3.  Kilker, R.D., Saunier, B., Tkacz, J.S. and Herscovics, A. Partial purification from Saccharomyces cerevisiae of a soluble glucosidase which removes the terminal glucose from the oligosaccharide Glc3Man9GlcNAc2. J. Biol. Chem. 256 (1981) 5299–5603. [PMID: 7014569]
4.  Grinna, L.S. and Robbins, P.W. Substrate specificities of rat liver microsomal glucosidases which process glycoproteins. J. Biol. Chem. 255 (1980) 2255–2258. [PMID: 7358666]
5.  Mark, M.J. and Kornfeld, S. Partial purification and characterization of the glucosidases involved in the processing of asparagine-linked oligosaccharides. Arch. Biochem. Biophys. 199 (1980) 249–258. [DOI] [PMID: 7356331]
[EC 3.2.1.106 created 1984, modified 2018]
 
 
EC 1.14.19.25     Relevance: 93.9%
Accepted name: acyl-lipid ω-3 desaturase (cytochrome b5)
Reaction: a linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = an α-linolenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
Glossary: linoleoyl-[glycerolipid] = (9Z,12Z)-octadeca-9,12-dienoyl-[glycerolipid]
α-linolenoyl-[glycerolipid] = (9Z,12Z,15Z)-octadeca-9,12,15-trienoyl-[glycerolipid]
Other name(s): FAD3
Systematic name: (9Z,12Z)-octadeca-9,12-dienoyl-[glycerolipid],ferrocytochrome b5:oxygen oxidoreductase (15,16 cis-dehydrogenating)
Comments: This microsomal enzyme introduces a cis double bond three carbons away from the methyl end of a fatty acid incorporated into a glycerolipid. The distance from the carboxylic acid end of the molecule does not have an effect. The plant enzyme acts on carbon 15 of linoleoyl groups incorporated into both the sn-1 and sn-2 positions of the glycerol backbone of phosphatidylcholine and other phospholipids, converting them into α-linolenoyl groups. The enzyme from the fungus Mortierella alpina acts on γ-linolenoyl and arachidonoyl groups, converting them into stearidonoyl and icosapentaenoyl groups, respectively [3]. cf. EC 1.14.19.35, sn-2 acyl-lipid ω-3 desaturase (ferredoxin).
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Browse, J., McConn, M., James, D., Jr. and Miquel, M. Mutants of Arabidopsis deficient in the synthesis of α-linolenate. Biochemical and genetic characterization of the endoplasmic reticulum linoleoyl desaturase. J. Biol. Chem. 268 (1993) 16345–16351. [PMID: 8102138]
2.  Arondel, V., Lemieux, B., Hwang, I., Gibson, S., Goodman, H.M. and Somerville, C.R. Map-based cloning of a gene controlling ω-3 fatty acid desaturation in Arabidopsis. Science 258 (1992) 1353–1355. [DOI] [PMID: 1455229]
3.  Sakuradani, E., Abe, T., Iguchi, K. and Shimizu, S. A novel fungal ω3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella alpina 1S-4. Appl. Microbiol. Biotechnol. 66 (2005) 648–654. [DOI] [PMID: 15538555]
[EC 1.14.19.25 created 2015]
 
 
EC 4.6.1.14     Relevance: 93.8%
Accepted name: glycosylphosphatidylinositol diacylglycerol-lyase
Reaction: 6-(α-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol = 6-(α-D-glucosaminyl)-1D-myo-inositol 1,2-cyclic phosphate + 1,2-diacyl-sn-glycerol
For diagram of glycosylphosphatidyl-myo-inositol biosynthesis, click here
Other name(s): (glycosyl)phosphatidylinositol-specific phospholipase C; GPI-PLC; GPI-specific phospholipase C; VSG-lipase; glycosyl inositol phospholipid anchor-hydrolyzing enzyme; glycosylphosphatidylinositol-phospholipase C; glycosylphosphatidylinositol-specific phospholipase C; variant-surface-glycoprotein phospholipase C; 6-(α-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol diacylglycerol-lyase (1,2-cyclic-phosphate-forming)
Systematic name: 6-(α-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol 1,2-diacyl-sn-glycerol-lyase [6-(α-D-glucosaminyl)-1D-myo-inositol 1,2-cyclic phosphate-forming]
Comments: This enzyme is also active when O-4 of the glucosamine is substituted by carrying the oligosaccharide that can link a protein to the structure. It therefore cleaves proteins from the lipid part of the glycosylphostphatidylinositol (GPI) anchors. In some cases, the long-chain acyl group at the sn-1 position of glycerol is replaced by an alkyl or alk-1-enyl group. In other cases, the diacylglycerol is replaced by ceramide (see Lip-1.4 and Lip-1.5 for definition). The only characterized enzyme with this specificity is from Trypanosoma brucei, where the acyl groups are myristoyl, but the function of the trypanosome enzyme is unknown. Substitution on O-2 of the inositol blocks action of this enzyme. It is not identical with EC 3.1.4.50, glycosylphosphatidylinositol phospholipase D.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 129070-68-4
References:
1.  Hereld, D., Krakow, J.L., Bangs, J.D., Hart, G.W. and Englund, P.T. A phospholipase C from Trypanosoma brucei which selectively cleaves the glycolipid on the variant surface glycoprotein. J. Biol. Chem. 261 (1986) 13813–13819. [PMID: 3759991]
2.  Carnall, N., Webb, H. and Carrington, M. Mutagenesis study of the glycosylphosphatidylinositol phospholipase C of Trypanosoma brucei. Mol. Biochem. Parasitol. 90 (1997) 423–432. [DOI] [PMID: 9476790]
3.  Armah, D.A. and Mensa-Wilmot, K. Tetramerization of glycosylphosphatidylinositol-specific phospholipase C from Trypanosoma brucei. J. Biol. Chem. 275 (2000) 19334–19342. [DOI] [PMID: 10764777]
[EC 4.6.1.14 created 1989 as EC 3.1.4.47, transferred 2002 to EC 4.6.1.14]
 
 
EC 2.4.1.383     Relevance: 93.7%
Accepted name: GDP-Man:α-L-Rha-(1→3)-α-D-Gal-PP-Und β-1,4-mannosyltransferase
Reaction: GDP-α-D-mannose + α-L-Rha-(1→3)-α-D-Gal-PP-Und = GDP + β-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und
Glossary: α-L-Rha-(1→3)-α-D-Gal-PP-Und = α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
β-D-Man-(1→4)-α-L-Rha-(1→3)-α-D-Gal-PP-Und = β-D-mannopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaO (gene name); rfbO (gene name)
Systematic name: GDP-α-D-mannose:α-L-rhamnopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 4II-β-mannosyltransferase (configuration inverting)
Comments: The enzyme participates in the biosynthesis of the O antigens produced by group E and D2 strains of the pathogenic bacterium Salmonella enterica.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Xiang, S.H., Hobbs, M. and Reeves, P.R. Molecular analysis of the rfb gene cluster of a group D2 Salmonella enterica strain: evidence for its origin from an insertion sequence-mediated recombination event between group E and D1 strains. J. Bacteriol. 176 (1994) 4357–4365. [DOI] [PMID: 8021222]
2.  Zhao, Y., Biggins, J. B. and Thorson, J. S. Acceptor specificity of Salmonella GDP-Man:α-L-Rha-(1→3)-α-D- Gal- PP-Und β(1→4)-mannosyltransferase: A simplified assay based on unnatural acceptors. J. Am. Chem. Soc. 120 (1998) 12986–12987. [DOI]
3.  Zhao, Y. and Thorson, J.S. Chemoenzymatic synthesis of the Salmonella group E1 core trisaccharide using a recombinant β-(1-→4)-mannosyltransferase. Carbohydr. Res. 319 (1999) 184–191. [DOI] [PMID: 10520265]
[EC 2.4.1.383 created 2021]
 
 
EC 5.4.99.66     Relevance: 93.3%
Accepted name: α-onocerin synthase
Reaction: pre-α-onocerin = α-onocerin
For diagram of α-onocerin biosynthesis, click here
Glossary: α-onocerin = 8,14-secogammacera-8(26),14(27)-diene-3β,21α-diol
pre-α-onocerin = (21S)-21,22-epoxypolypoda-8(26)-13,17-trien-3β-ol
Other name(s): LCD
Systematic name: pre-α-onocerin mutase (cyclizing, α-onocerin-forming)
Comments: Isolated from the plant Lycopodium clavatum.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Araki, T., Saga, Y., Marugami, M., Otaka, J., Araya, H., Saito, K., Yamazaki, M., Suzuki, H. and Kushiro, T. Onocerin biosynthesis requires two highly dedicated triterpene cyclases in a fern Lycopodium clavatum. ChemBioChem 17 (2016) 288–290. [DOI] [PMID: 26663356]
[EC 5.4.99.66 created 2017]
 
 
EC 2.4.1.125     Relevance: 93.2%
Accepted name: sucrose—1,6-α-glucan 3(6)-α-glucosyltransferase
Reaction: (1) sucrose + [(1→6)-α-D-glucosyl]n = D-fructose + [(1→6)-α-D-glucosyl]n+1
(2) sucrose + [(1→6)-α-D-glucosyl]n = D-fructose + (1→3)-α-D-glucosyl-[(1→6)-α-D-glucosyl]n
Other name(s): water-soluble-glucan synthase (misleading); GTF-I; GTF-S; GTF-SI; sucrose-1,6-α-glucan 3(6)-α-glucosyltransferase; sucrose:1,6-α-D-glucan 3-α- and 6-α-glucosyltransferase; sucrose:1,6-, 1,3-α-D-glucan 3-α- and 6-α-D-glucosyltransferase; sucrose:1,6-α-D-glucan 3(6)-α-D-glucosyltransferase; gtfB (gene name); gtfC (gene name); gtfD (gene name)
Systematic name: sucrose:(1→6)-α-D-glucan 3(6)-α-D-glucosyltransferase
Comments: The glucansucrases transfer a D-glucosyl residue from sucrose to a glucan chain. They are classified based on the linkage by which they attach the transferred residue. In some cases, in which the enzyme forms more than one linkage type, classification relies on the relative proportion of the linkages that are generated. This enzyme extends (1→6)-α-D-glucans by both α(1→3) and α(1→6) linkages, with one of the linkage types being dominant. cf. EC 2.4.1.140, alternansucrase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 81725-87-3
References:
1.  Mukasa, H., Shimamura, A. and Tsumori, H. Purification and characterization of basic glucosyltransferase from Streptococcus mutans serotype c. Biochim. Biophys. Acta 719 (1982) 81–89. [DOI] [PMID: 6216919]
2.  Shimamura, A., Tsumori, H. and Mukasa, H. Purification and properties of Streptococcus mutans extracellular glucosyltransferase. Biochim. Biophys. Acta 702 (1982) 72–80. [DOI] [PMID: 6461359]
3.  Tsumori, H., Shimamura, A. and Mukasa, H. Purification and properties of extracellular glucosyltransferase synthesizing 1,6-, 1,3-α-D-glucan from Streptococcus mutans serotype a. J. Gen. Microbiol. 131 (1985) 3347–3353. [DOI] [PMID: 2937877]
4.  Fujiwara, T., Tamesada, M., Bian, Z., Kawabata, S., Kimura, S. and Hamada, S. Deletion and reintroduction of glucosyltransferase genes of Streptococcus mutans and role of their gene products in sucrose dependent cellular adherence. Microb Pathog 20 (1996) 225–233. [DOI] [PMID: 8737492]
5.  Monchois, V., Willemot, R.M. and Monsan, P. Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol. Rev. 23 (1999) 131–151. [DOI] [PMID: 10234842]
6.  Ito, K., Ito, S., Shimamura, T., Weyand, S., Kawarasaki, Y., Misaka, T., Abe, K., Kobayashi, T., Cameron, A.D. and Iwata, S. Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. J. Mol. Biol. 408 (2011) 177–186. [DOI] [PMID: 21354427]
[EC 2.4.1.125 created 1984]
 
 
EC 2.4.1.309     Relevance: 93.1%
Accepted name: UDP-Gal:α-L-Fuc-1,2-β-Gal-1,3-α-GalNAc-1,3-α-GalNAc-diphosphoundecaprenol α-1,3-galactosyltransferase
Reaction: UDP-α-D-galactose + α-L-Fuc-(1→2)-β-D-Gal-(1→3)-α-D-GalNAc-(1→3)-α-D-GalNAc-diphospho-ditrans,octacis-undecaprenol = UDP + α-D-Gal-(1→3)-(α-L-Fuc-(1→2))-β-D-Gal-(1→3)-α-D-GalNAc-(1→3)-α-D-GalNAc-diphospho-ditrans,octacis-undecaprenol
Other name(s): WbnI
Systematic name: UDP-α-D-galactose:α-L-Fuc-(1→2)-β-D-Gal-(1→3)-α-D-GalNAc-(1→3)-α-D-GalNAc-diphospho-ditrans,octacis-undecaprenol α-1,3-galactosyltransferase
Comments: The enzyme is involved in the the biosynthesis of the O-polysaccharide repeating unit of the bacterium Escherichia coli serotype O86.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Yi, W., Shao, J., Zhu, L., Li, M., Singh, M., Lu, Y., Lin, S., Li, H., Ryu, K., Shen, J., Guo, H., Yao, Q., Bush, C.A. and Wang, P.G. Escherichia coli O86 O-antigen biosynthetic gene cluster and stepwise enzymatic synthesis of human blood group B antigen tetrasaccharide. J. Am. Chem. Soc. 127 (2005) 2040–2041. [DOI] [PMID: 15713070]
2.  Yi, W., Zhu, L., Guo, H., Li, M., Li, J. and Wang, P.G. Formation of a new O-polysaccharide in Escherichia coli O86 via disruption of a glycosyltransferase gene involved in O-unit assembly. Carbohydr. Res. 341 (2006) 2254–2260. [DOI] [PMID: 16839526]
3.  Woodward, R., Yi, W., Li, L., Zhao, G., Eguchi, H., Sridhar, P.R., Guo, H., Song, J.K., Motari, E., Cai, L., Kelleher, P., Liu, X., Han, W., Zhang, W., Ding, Y., Li, M. and Wang, P.G. In vitro bacterial polysaccharide biosynthesis: defining the functions of Wzy and Wzz. Nat. Chem. Biol. 6 (2010) 418–423. [DOI] [PMID: 20418877]
[EC 2.4.1.309 created 2013]
 
 
EC 3.2.1.55     Relevance: 93%
Accepted name: non-reducing end α-L-arabinofuranosidase
Reaction: Hydrolysis of terminal non-reducing α-L-arabinofuranoside residues in α-L-arabinosides.
Other name(s): arabinosidase (ambiguous); α-arabinosidase; α-L-arabinosidase; α-arabinofuranosidase; polysaccharide α-L-arabinofuranosidase; α-L-arabinofuranoside hydrolase; L-arabinosidase (ambiguous); α-L-arabinanase
Systematic name: α-L-arabinofuranoside non-reducing end α-L-arabinofuranosidase
Comments: The enzyme acts on α-L-arabinofuranosides, α-L-arabinans containing (1,3)- and/or (1,5)-linkages, arabinoxylans and arabinogalactans. Some β-galactosidases (EC 3.2.1.23) and β-D-fucosidases (EC 3.2.1.38) also hydrolyse α-L-arabinosides. cf. EC 3.2.1.185, non-reducing end β-L-arabinofuranosidase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9067-74-7
References:
1.  Tagawa, K. and Kaji, A. Preparation of L-arabinose-containing polysaccharides and the action of an α-L-arabinofuranosidase on these polysaccharides. Carbohydr. Res. 11 (1969) 293–301.
2.  Kaji, A. and Tagawa, K. Purification, crystallization and amino acid composition of α-L-arabinofuranosidase from Aspergillus niger. Biochim. Biophys. Acta 207 (1970) 456–464. [DOI] [PMID: 5452669]
3.  Kaji, A. and Yoshihara, O. Properties of purified α-L-arabinofuranosidase from Corticium rolfsii. Biochim. Biophys. Acta 250 (1971) 367–371. [DOI] [PMID: 5143344]
4.  Margolles-Clark, E., Tenkanen, M., Nakari-Setala, T. and Penttila, M. Cloning of genes encoding α-L-arabinofuranosidase and β-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 62 (1996) 3840–3846. [PMID: 8837440]
5.  Inacio, J.M., Correia, I.L. and de Sa-Nogueira, I. Two distinct arabinofuranosidases contribute to arabino-oligosaccharide degradation in Bacillus subtilis. Microbiology 154 (2008) 2719–2729. [DOI] [PMID: 18757805]
[EC 3.2.1.55 created 1972, modified 1976 (EC 3.2.1.79 created 1972, incorporated 1976), modified 2013]
 
 
EC 3.2.1.141     Relevance: 92.7%
Accepted name: 4-α-D-{(1→4)-α-D-glucano}trehalose trehalohydrolase
Reaction: hydrolysis of (1→4)-α-D-glucosidic linkage in 4-α-D-[(1→4)-α-D-glucanosyl]n trehalose to yield trehalose and (1→4)-α-D-glucan
Other name(s): malto-oligosyltrehalose trehalohydrolase
Systematic name: 4-α-D-[(1→4)-α-D-glucano]trehalose glucanohydrolase (trehalose-producing)
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 170780-50-4
References:
1.  Maruta, K., Nakada, T., Kubota, M., Chaen, H., Sugimoto, T., Kurimoto, M., Tsujisaka, Y. Formation of trehalose from maltooligosaccharides by a novel enzymatic system. Biosci. Biotechnol. Biochem. 59 (1995) 1829–1834. [DOI] [PMID: 8534970]
2.  Nakada, T., Maruta, K., Mitsuzumi, H., Kubota, M., Chaen, H., Sugimoto, T. , Kurimoto M., Tsujisaka, Y. Purification and characterization of a novel enzyme, maltooligosyl trehalose trehalohydrolase, from Arthrobacter sp. Q36. Biosci. Biotechnol. Biochem. 59 (1995) 2215–2218. [DOI] [PMID: 8611745]
3.  Nakada, T., Ikegami, S., Chaen, H., Kubota, M., Fukuda, S., Sugimoto, T., Kurimoto, M., Tsujisaka, Y. Purification and characterization of thermostable maltooligosyl trehalose trehalohydrolase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biosci. Biotechnol. Biochem. 60 (1996) 267–270. [PMID: 9063974]
[EC 3.2.1.141 created 1999]
 
 
EC 2.4.1.337     Relevance: 92.6%
Accepted name: 1,2-diacylglycerol 3-α-glucosyltransferase
Reaction: UDP-α-D-glucose + a 1,2-diacyl-sn-glycerol = UDP + a 1,2-diacyl-3-O-(α-D-glucopyranosyl)-sn-glycerol
Other name(s): mgs (gene name); UDP-glucose:diacylglycerol glucosyltransferase; UDP-glucose:1,2-diacylglycerol glucosyltransferase; uridine diphosphoglucose-diacylglycerol glucosyltransferase; UDP-glucose-diacylglycerol glucosyltransferase; UDP-glucose:1,2-diacylglycerol 3-D-glucosyltransferase; UDP-glucose:1,2-diacyl-sn-glycerol 3-D-glucosyltransferase; 1,2-diacylglycerol 3-glucosyltransferase (ambiguous)
Systematic name: UDP-α-D-glucose:1,2-diacyl-sn-glycerol 3-α-D-glucosyltransferase
Comments: The enzyme from the bacterium Acholeplasma laidlawii, which lacks a cell wall, produces the major non-bilayer lipid in the organism. The enzyme from the bacterium Agrobacterium tumefaciens acts under phosphate deprivation, generating glycolipids as surrogates for phospholipids. The enzyme belongs to the GT4 family of configuration-retaining glycosyltransferases. Many diacylglycerols with long-chain acyl groups can act as acceptors. cf. EC 2.4.1.336, monoglucosyldiacylglycerol synthase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Karlsson, O.P., Dahlqvist, A., Vikstrom, S. and Wieslander, A. Lipid dependence and basic kinetics of the purified 1,2-diacylglycerol 3-glucosyltransferase from membranes of Acholeplasma laidlawii. J. Biol. Chem. 272 (1997) 929–936. [DOI] [PMID: 8995384]
2.  Li, L., Storm, P., Karlsson, O.P., Berg, S. and Wieslander, A. Irreversible binding and activity control of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii at an anionic lipid bilayer surface. Biochemistry 42 (2003) 9677–9686. [DOI] [PMID: 12911309]
3.  Berg, S., Edman, M., Li, L., Wikstrom, M. and Wieslander, A. Sequence properties of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii membranes. Recognition of a large group of lipid glycosyltransferases in eubacteria and archaea. J. Biol. Chem. 276 (2001) 22056–22063. [DOI] [PMID: 11294844]
4.  Semeniuk, A., Sohlenkamp, C., Duda, K. and Holzl, G. A bifunctional glycosyltransferase from Agrobacterium tumefaciens synthesizes monoglucosyl and glucuronosyl diacylglycerol under phosphate deprivation. J. Biol. Chem. 289 (2014) 10104–10114. [DOI] [PMID: 24558041]
[EC 2.4.1.337 created 2015]
 
 
EC 2.4.1.231     Relevance: 92.6%
Accepted name: α,α-trehalose phosphorylase (configuration-retaining)
Reaction: α,α-trehalose + phosphate = α-D-glucose + α-D-glucose 1-phosphate
For diagram of the reactions of trehalose phosphorylase, click here
Other name(s): trehalose phosphorylase[ambiguous]
Systematic name: α,α-trehalose:phosphate α-D-glucosyltransferase
Comments: Unlike EC 2.4.1.64, α,α-trehalose phosphorylase, this enzyme retains its anomeric configuration. Vanadate is a strong competitive inhibitor of this reversible reaction.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Eis, C. and Nidetzky, B. Substrate-binding recognition and specificity of trehalose phosphorylase from Schizophyllum commune examined in steady-state kinetic studies with deoxy and deoxyfluoro substrate analogues and inhibitors. Biochem. J. 363 (2002) 335–340. [PMID: 11931662]
2.  Eis, C., Watkins, M., Prohaska, T. and Nidetzky, B. Fungal trehalose phosphorylase: kinetic mechanism, pH-dependence of the reaction and some structural properties of the enzyme from Schizophyllum commune. Biochem. J. 356 (2001) 757–767. [PMID: 11389683]
3.  Nidetzky, B. and Eis, C. α-Retaining glucosyl transfer catalysed by trehalose phosphorylase from Schizophyllum commune: mechanistic evidence obtained from steady-state kinetic studies with substrate analogues and inhibitors. Biochem. J. 360 (2001) 727–736. [PMID: 11736665]
[EC 2.4.1.231 created 2003]
 
 
EC 3.2.1.22     Relevance: 92.4%
Accepted name: α-galactosidase
Reaction: Hydrolysis of terminal, non-reducing α-D-galactose residues in α-D-galactosides, including galactose oligosaccharides, galactomannans and galactolipids
Other name(s): melibiase; α-D-galactosidase; α-galactosidase A; α-galactoside galactohydrolase
Systematic name: α-D-galactoside galactohydrolase
Comments: Also hydrolyses α-D-fucosides.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9025-35-8
References:
1.  Suzuki, H., Li, S.-C. and Li, Y.-T. α-Galactosidase from Mortierella vinacea. Crystallization and properties. J. Biol. Chem. 245 (1970) 781–786. [PMID: 5418105]
2.  Wiederschain, G. and Beyer, E. [Interrelation of α-D-fucosidase and α-D-galactosidase activities in man and animals] Dokl. Akad. Nauk S.S.S.R. 231 (1976) 486–488. [PMID: 976079]
[EC 3.2.1.22 created 1961]
 
 
EC 2.4.1.379     Relevance: 91.9%
Accepted name: GDP-Man:α-D-Gal-diphosphoundecaprenol α-1,3-mannosyltransferase
Reaction: GDP-α-D-mannose + α-D-galactosyl-diphospho-ditrans-octacis-undecaprenol = GDP + α-D-Man-(1→3)-α-D-Gal-PP-Und
Glossary: α-D-Man-(1→3)-α-D-Gal-PP-Und = α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol
Other name(s): wbaZ (gene name); rfbZ (gene name)
Systematic name: GDP-α-D-mannose:α-D-mannopyranosyl-(1→3)-α-D-galactopyranosyl-diphospho-ditrans,octacis-undecaprenol 3-α-mannosyltransferase (configuration-retaining)
Comments: The enzyme, present in Salmonella strains that belong to group C2, participates in the biosynthesis of the repeat unit of O antigens produced by these strains.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Brown, P.K., Romana, L.K. and Reeves, P.R. Cloning of the rfb gene cluster of a group C2 Salmonella strain: comparison with the rfb regions of groups B and D. Mol. Microbiol. 5 (1991) 1873–1881. [DOI] [PMID: 1722557]
2.  Brown, P.K., Romana, L.K. and Reeves, P.R. Molecular analysis of the rfb gene cluster of Salmonella serovar muenchen (strain M67): the genetic basis of the polymorphism between groups C2 and B. Mol. Microbiol. 6 (1992) 1385–1394. [DOI] [PMID: 1379320]
3.  Liu, D., Haase, A.M., Lindqvist, L., Lindberg, A.A. and Reeves, P.R. Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: identification and characterization of transferase genes of groups B, C2, and E1. J. Bacteriol. 175 (1993) 3408–3413. [DOI] [PMID: 7684736]
4.  Zhao, X., Dai, Q., Jia, R., Zhu, D., Liu, M., Wang, M., Chen, S., Sun, K., Yang, Q., Wu, Y. and Cheng, A. two novel Salmonella bivalent vaccines confer dual protection against two Salmonella serovars in mice. Front Cell Infect Microbiol 7:391 (2017). [DOI] [PMID: 28929089]
[EC 2.4.1.379 created 2021]
 
 
EC 3.2.1.133     Relevance: 91.8%
Accepted name: glucan 1,4-α-maltohydrolase
Reaction: hydrolysis of (1→4)-α-D-glucosidic linkages in polysaccharides so as to remove successive α-maltose residues from the non-reducing ends of the chains
Other name(s): maltogenic α-amylase; 1,4-α-D-glucan α-maltohydrolase
Systematic name: 4-α-D-glucan α-maltohydrolase
Comments: Acts on starch and related polysaccharides and oligosaccharides. The product is α-maltose; cf. EC 3.2.1.2 β-amylase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 160611-47-2
References:
1.  Diderichsen, B. and Christiansen, L. Cloning of a maltogenic α-amylase from Bacillus stearothermophilus. FEMS Microbiol. Lett. 56 (1988) 53–59.
2.  Outtrup, H. and Norman, B.E. Properties and application of a thermostable maltogenic amylase produced by a strain of Bacillus modified by recombinant-DNA techniques. Stärke 36 (1984) 405–411.
[EC 3.2.1.133 created 1992, modified 1999]
 
 
EC 2.4.1.342     Relevance: 91.5%
Accepted name: α-maltose-1-phosphate synthase
Reaction: ADP-α-D-glucose + α-D-glucose-1-phosphate = ADP + α-maltose-1-phosphate
Glossary: maltose = α-D-glucopyranosyl-(1→4)-D-glucose
Other name(s): glgM (gene name)
Systematic name: ADP-α-D-glucose:α-D-glucose-1-phosphate 4-α-D-glucosyltransferase (configuration-retaining)
Comments: The enzyme, found in Mycobacteria, can also use UDP-α-D-glucose with much lower catalytic efficiency.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Koliwer-Brandl, H., Syson, K., van de Weerd, R., Chandra, G., Appelmelk, B., Alber, M., Ioerger, T.R., Jacobs, W.R., Jr., Geurtsen, J., Bornemann, S. and Kalscheuer, R. Metabolic network for the biosynthesis of intra- and extracellular α-glucans required for virulence of Mycobacterium tuberculosis. PLoS Pathog. 12 (2016) e1005768. [DOI] [PMID: 27513637]
[EC 2.4.1.342 created 2016]
 
 
EC 2.8.2.37     Relevance: 91.3%
Accepted name: trehalose 2-sulfotransferase
Reaction: 3′-phosphoadenylyl sulfate + α,α-trehalose = adenosine 3′,5′-bisphosphate + 2-O-sulfo-α,α-trehalose
Glossary: 2-O-sulfo-α,α-trehalose = trehalose 2-sulfate = α-D-glucopyranosyl 2-O-sulfo-α-D-glucopyranoside
Other name(s): Stf0 sulfotransferase; 3′-phosphoadenylyl-sulfate:α,α-trehalose 2-sulfotransferase
Systematic name: 3′-phosphoadenylyl-sulfate:α,α-trehalose 2-sulfonotransferase
Comments: The sulfation of trehalose in the bacterium Mycobacterium tuberculosis is required for the biosynthesis of sulfolipid-1.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Mougous, J.D., Petzold, C.J., Senaratne, R.H., Lee, D.H., Akey, D.L., Lin, F.L., Munchel, S.E., Pratt, M.R., Riley, L.W., Leary, J.A., Berger, J.M. and Bertozzi, C.R. Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Nat. Struct. Mol. Biol. 11 (2004) 721–729. [DOI] [PMID: 15258569]
2.  Pi, N., Hoang, M.B., Gao, H., Mougous, J.D., Bertozzi, C.R. and Leary, J.A. Kinetic measurements and mechanism determination of Stf0 sulfotransferase using mass spectrometry. Anal. Biochem. 341 (2005) 94–104. [DOI] [PMID: 15866533]
[EC 2.8.2.37 created 2014]
 
 
EC 2.4.1.167     Relevance: 90.8%
Accepted name: sucrose 6F-α-galactosyltransferase
Reaction: UDP-α-D-galactose + sucrose = UDP + 6F-α-D-galactosylsucrose
Other name(s): uridine diphosphogalactose-sucrose 6F-α-galactosyltransferase; UDPgalactose:sucrose 6fru-α-galactosyltransferase; sucrose 6F-α-galactotransferase; UDP-galactose:sucrose 6F-α-D-galactosyltransferase
Systematic name: UDP-α-D-galactose:sucrose 6F-α-D-galactosyltransferase
Comments: The enzyme is involved in the synthesis of the trisaccharide planteose and higher analogues in the seeds of Plantago and Sesamum species.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 92480-04-1
References:
1.  Hopf, H., Spanfelner, M. and Kandler, O. Planteose synthesis in seeds of Sesamum indicum L. Z. Pflanzenphysiol. 114 (1984) 485–492.
[EC 2.4.1.167 created 1989]
 
 
EC 3.2.1.139     Relevance: 90.4%
Accepted name: α-glucuronidase
Reaction: an α-D-glucuronoside + H2O = an alcohol + D-glucuronate
Other name(s): α-glucosiduronase
Systematic name: α-D-glucosiduronate glucuronohydrolase
Comments: Considerable differences in the specificities of the enzymes from different fungi for α-D-glucosiduronates have been reported. Activity is also found in the snail.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37259-81-7
References:
1.  Puls, J. α-Glucuronidases in the hydrolysis of wood xylans. In: Visser, J., Kusters van Someren, M.A., Beldman, G. and Voragen, A.G.J. (Ed.), Xylans and Xylanases, Elsevier, Amsterdam, 1992, pp. 213–224.
2.  Uchida, H., Nanri, T., Kawabata, Y., Kusakabe, I., Murakami, K. Purification and characterization of intracellular α-glucuronidase from Aspergillus niger. Biosci. Biotechnol. Biochem. 56 (1992) 1608–1615.
[EC 3.2.1.139 created 1999]
 
 
EC 2.4.1.362     Relevance: 90.3%
Accepted name: α-(1→3) branching sucrase
Reaction: sucrose + a (1→6)-α-D-glucan = D-fructose + a (1→6)-α-D-glucan containing a (1→3)-α-D-glucose branch
Other name(s): branching sucrase A; BRS-A; brsA (gene name)
Systematic name: sucrose:(1→6)-α-D-glucan 3-α-D-[(1→3)-α-D-glucosyl]-transferase
Comments: The enzyme from Leuconostoc spp. is responsible for producing α-(1→3) branches in α-(1→6) glucans by transferring the glucose residue from fructose to a 3-hydroxyl group of a glucan.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Vuillemin, M., Claverie, M., Brison, Y., Severac, E., Bondy, P., Morel, S., Monsan, P., Moulis, C. and Remaud-Simeon, M. Characterization of the first α-(1→3) branching sucrases of the GH70 family. J. Biol. Chem. 291 (2016) 7687–7702. [PMID: 26763236]
2.  Moulis, C., Andre, I. and Remaud-Simeon, M. GH13 amylosucrases and GH70 branching sucrases, atypical enzymes in their respective families. Cell. Mol. Life Sci. 73 (2016) 2661–2679. [PMID: 27141938]
[EC 2.4.1.362 created 2019]
 
 
EC 3.2.1.50     Relevance: 89.5%
Accepted name: α-N-acetylglucosaminidase
Reaction: Hydrolysis of terminal non-reducing N-acetyl-D-glucosamine residues in N-acetyl-α-D-glucosaminides
Other name(s): α-acetylglucosaminidase; N-acetyl-α-D-glucosaminidase; N-acetyl-α-glucosaminidase; α-D-2-acetamido-2-deoxyglucosidase
Systematic name: α-N-acetyl-D-glucosaminide N-acetylglucosaminohydrolase
Comments: Hydrolyses UDP-N-acetylglucosamine.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 37288-40-7
References:
1.  von Figura, K. Human α-N-acetylglucosaminidase. 1. Purification and properties. Eur. J. Biochem. 80 (1977) 523–533. [PMID: 411658]
2.  von Figura, K. Human α-N-acetylglucosaminidase. 2. Activity towards natural substrates and multiple recognition forms. Eur. J. Biochem. 80 (1977) 535–542. [DOI] [PMID: 923593]
3.  Weissmann, B., Rowen, G., Marshall, J. and Friederici, D. Mammalian α-acetylglucosaminidase. Enzymic properties, tissue distribution, and intracellular localization. Biochemistry 6 (1967) 207–214. [PMID: 4291567]
4.  Werries, E., Wollek, E., Gottschalk, A. and Buddecke, E. Separation of N-acetyl-α-glucosaminidase and N-acetyl-α-galactosaminidase from ox spleen. Cleavage of the O-glycosidic linkage between carbohydrate and polypeptide in ovine and bovine submaxillary glycoprotein by N-acetyl-α-galactosaminidase. Eur. J. Biochem. 10 (1969) 445–449. [DOI] [PMID: 5348072]
[EC 3.2.1.50 created 1972]
 
 
EC 1.14.11.58     Relevance: 89%
Accepted name: ornithine lipid ester-linked acyl 2-hydroxylase
Reaction: an ornithine lipid + 2-oxoglutarate + O2 = a 2-hydroxyornithine lipid + succinate + CO2
Glossary: an ornithine lipid = an Nα-[(3R)-3-(acyloxy)acyl]-L-ornithine
a 2-hydroxyornithine lipid = an Nα-[(3R)-3-(2-hydroxyacyloxy)acyl]-L-ornithine
Other name(s): olsC (gene name)
Systematic name: ornithine lipid,2-oxoglutarate:oxygen oxidoreductase (ester-linked acyl 2-hydroxylase)
Comments: The enzyme, characterized from the bacterium Rhizobium tropici, catalyses the hydroxylation of C-2 of the fatty acyl group that is ester-linked to the 3-hydroxy position of the amide-linked fatty acid.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Rojas-Jimenez, K., Sohlenkamp, C., Geiger, O., Martinez-Romero, E., Werner, D. and Vinuesa, P. A ClC chloride channel homolog and ornithine-containing membrane lipids of Rhizobium tropici CIAT899 are involved in symbiotic efficiency and acid tolerance. Mol. Plant Microbe Interact. 18 (2005) 1175–1185. [DOI] [PMID: 16353552]
2.  Vences-Guzman, M.A., Guan, Z., Ormeno-Orrillo, E., Gonzalez-Silva, N., Lopez-Lara, I.M., Martinez-Romero, E., Geiger, O. and Sohlenkamp, C. Hydroxylated ornithine lipids increase stress tolerance in Rhizobium tropici CIAT899. Mol. Microbiol. 79 (2011) 1496–1514. [DOI] [PMID: 21205018]
[EC 1.14.11.58 created 2018]
 
 
EC 3.2.1.59     Relevance: 88.8%
Accepted name: glucan endo-1,3-α-glucosidase
Reaction: Endohydrolysis of (1→3)-α-D-glucosidic linkages in isolichenin, pseudonigeran and nigeran
Other name(s): endo-1,3-α-glucanase; mutanase; endo-(1→3)-α-glucanase; cariogenase; cariogenanase; endo-1,3-α-D-glucanase; 1,3(1,3;1,4)-α-D-glucan 3-glucanohydrolase
Systematic name: 3-α-D-glucan 3-glucanohydrolase
Comments: Products from pseudonigeran (1,3-α-D-glucan) are nigerose and α-D-glucose.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9075-84-7
References:
1.  Hasegawa, S., Nordin, J.H. and Kirkwood, S. Enzymes that hydrolyze fungal cell wall polysaccharides. I. Purification and properties of an endo-α-D-(1-3)-glucanase from Trichoderma. J. Biol. Chem. 244 (1969) 5460–5470. [PMID: 5388595]
[EC 3.2.1.59 created 1972]
 
 
EC 3.2.1.49     Relevance: 88.7%
Accepted name: α-N-acetylgalactosaminidase
Reaction: Cleavage of non-reducing α-(1→3)-N-acetylgalactosamine residues from human blood group A and AB mucin glycoproteins, Forssman hapten and blood group A lacto series glycolipids
Other name(s): α-acetylgalactosaminidase; N-acetyl-α-D-galactosaminidase; N-acetyl-α-galactosaminidase; α-NAGAL; α-NAGA; α-GalNAcase
Systematic name: α-N-acetyl-D-galactosaminide N-acetylgalactosaminohydrolase
Comments: The human lysosomal enzyme is involved in the degradation of blood type A epitope.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9075-63-2
References:
1.  Asfaw, B., Schindler, D., Ledvinova, J., Cerny, B., Smid, F. and Conzelmann, E. Degradation of blood group A glycolipid A-6-2 by normal and mutant human skin fibroblasts. J. Lipid Res. 39 (1998) 1768–1780. [PMID: 9741689]
2.  Zhu, A., Monahan, C., Wang, Z.K. and Goldstein, J. Expression, purification, and characterization of recombinant α-N-acetylgalactosaminidase produced in the yeast Pichia pastoris. Protein Expr. Purif. 8 (1996) 456–462. [DOI] [PMID: 8954893]
3.  Clark, N.E. and Garman, S.C. The 1.9 Å structure of human α-N-acetylgalactosaminidase: The molecular basis of Schindler and Kanzaki diseases. J. Mol. Biol. 393 (2009) 435–447. [DOI] [PMID: 19683538]
4.  Hoskins, L.C., Boulding, E.T. and Larson, G. Purification and characterization of blood group A-degrading isoforms of α-N-acetylgalactosaminidase from Ruminococcus torques strain IX-70. J. Biol. Chem. 272 (1997) 7932–7939. [DOI] [PMID: 9065462]
5.  Harun-Or-Rashid, M., Matsuzawa, T., Satoh, Y., Shiraishi, T., Ando, M., Sadik, G. and Uda, Y. Purification and characterization of α-N-acetylgalactosaminidases I and II from the starfish Asterina amurensis. Biosci. Biotechnol. Biochem. 74 (2010) 256–261. [DOI] [PMID: 20139603]
6.  Weignerova, L., Filipi, T., Manglova, D. and Kren, V. Induction, purification and characterization of α-N-acetylgalactosaminidase from Aspergillus niger. Appl. Microbiol. Biotechnol. 79 (2008) 769–774. [DOI] [PMID: 18443780]
7.  Ashida, H., Tamaki, H., Fujimoto, T., Yamamoto, K. and Kumagai, H. Molecular cloning of cDNA encoding α-N-acetylgalactosaminidase from Acremonium sp. and its expression in yeast. Arch. Biochem. Biophys. 384 (2000) 305–310. [DOI] [PMID: 11368317]
[EC 3.2.1.49 created 1972, modified 2011]
 
 
EC 3.2.1.116     Relevance: 88.4%
Accepted name: glucan 1,4-α-maltotriohydrolase
Reaction: Hydrolysis of (1→4)-α-D-glucosidic linkages in amylaceous polysaccharides, to remove successive maltotriose residues from the non-reducing chain ends
Other name(s): exo-maltotriohydrolase; maltotriohydrolase; 1,4-α-D-glucan maltotriohydrolase
Systematic name: 4-α-D-glucan maltotriohydrolase
Comments: cf. EC 3.2.1.2 (β-amylase), EC 3.2.1.60 (glucan 1,4-α-maltotetraohydrolase) and EC 3.2.1.98 (glucan 1,4-α-maltohexaosidase). The products have the α-configuration.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 91273-84-6
References:
1.  Nakakuki, T., Azuma, K. and Kainuma, K. Action patterns of various exo-amylases and the anomeric configurations of their products. Carbohydr. Res. 128 (1984) 297–310.
[EC 3.2.1.116 created 1989]
 
 
EC 3.2.1.82     Relevance: 88.2%
Accepted name: exo-poly-α-digalacturonosidase
Reaction: [(1→4)-α-D-galacturonosyl]n + H2O = α-D-galacturonosyl-(1→4)-D-galacturonate + [(1→4)-α-D-galacturonosyl]n-2
Other name(s): pehX (gene name); poly(1,4-α-D-galactosiduronate) digalacturonohydrolase; exopolygalacturonosidase (misleading); poly[(1→4)-α-D-galactosiduronate] digalacturonohydrolase; exo-poly-α-galacturonosidase
Systematic name: poly[(1→4)-α-D-galactosiduronate] non-reducing-end-digalacturonohydrolase
Comments: The enzyme, characterized from bacteria, hydrolyses the second α-1,4-glycosidic bond from the non-reducing end of polygalacturonate, releasing digalacturonate.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 37288-58-7
References:
1.  Hasegawa, H. and Nagel, C.W. Isolation of an oligogalacturonate hydrolase from a Bacillus species. Arch. Biochem. Biophys. 124 (1968) 513–520. [DOI] [PMID: 5661621]
2.  Hatanaka, C. and Ozawa, J. Enzymic degradation of pectic acid. XIII. New exopolygalacturonase producing digalacturonic acid from pectic acid. J. Agric. Chem. Soc. Jpn.. 43 (1968) 764–772.
3.  Hatanaka, C. and Ozawa, J. Ber. des O'Hara Inst. 15 (1971) 47.
4.  He, S.Y. and Collmer, A. Molecular cloning, nucleotide sequence, and marker exchange mutagenesis of the exo-poly-α-D-galacturonosidase-encoding pehX gene of Erwinia chrysanthemi EC16. J. Bacteriol. 172 (1990) 4988–4995. [PMID: 2168372]
[EC 3.2.1.82 created 1972, modified 2019]
 
 
EC 2.4.1.157      
Transferred entry: 1,2-diacylglycerol 3-glucosyltransferase. Now classified as EC 2.4.1.336, monoglucosyldiacylglycerol synthase, and EC 2.4.1.337, 1,2-diacylglycerol 3-α-glucosyltransferase
[EC 2.4.1.157 created 1986, deleted 2015]
 
 
EC 3.2.1.99     Relevance: 87.9%
Accepted name: arabinan endo-1,5-α-L-arabinanase
Reaction: Endohydrolysis of (1→5)-α-arabinofuranosidic linkages in (1→5)-arabinans
Other name(s): endo-1,5-α-L-arabinanase; endo-α-1,5-arabanase; endo-arabanase; 1,5-α-L-arabinan 1,5-α-L-arabinanohydrolase; arabinan endo-1,5-α-L-arabinosidase (misleading)
Systematic name: 5-α-L-arabinan 5-α-L-arabinanohydrolase
Comments: Acts best on linear 1,5-α-L-arabinan. Also acts on branched arabinan, but more slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 75432-96-1
References:
1.  Kaji, A. and Saheki, T. Endo-arabinanase from Bacillus subtilis F-11. Biochim. Biophys. Acta 410 (1975) 354–360. [DOI] [PMID: 1096]
2.  Weinstein, L. and Albersheim, P. Structure of plant cell walls. IX. Purification and partial characterization of a wall-degrading endo-arabinase and an arabinosidase from Bacillus subtilis. Plant Physiol. 63 (1979) 425–432. [PMID: 16660741]
3.  Flipphi, M.J., Panneman, H., van der Veen, P., Visser, J. and de Graaff, L.H. Molecular cloning, expression and structure of the endo-1,5-α-L-arabinase gene of Aspergillus niger. Appl. Microbiol. Biotechnol. 40 (1993) 318–326. [PMID: 7764386]
4.  Leal, T.F. and de Sa-Nogueira, I. Purification, characterization and functional analysis of an endo-arabinanase (AbnA) from Bacillus subtilis. FEMS Microbiol. Lett. 241 (2004) 41–48. [DOI] [PMID: 15556708]
[EC 3.2.1.99 created 1981, modified 2011]
 
 
EC 2.4.1.347     Relevance: 87.7%
Accepted name: α,α-trehalose-phosphate synthase (ADP-forming)
Reaction: ADP-α-D-glucose + D-glucose 6-phosphate = ADP + α,α-trehalose 6-phosphate
Other name(s): otsA (gene name); ADP-glucose—glucose-phosphate glucosyltransferase
Systematic name: ADP-α-D-glucose:D-glucose-6-phosphate 1-α-D-glucosyltransferase (configuration-retaining)
Comments: The enzyme has been reported from the yeast Saccharomyces cerevisiae and from mycobacteria. The enzyme from Mycobacterium tuberculosis can also use UDP-α-D-glucose, but the activity with ADP-α-D-glucose, which is considered the main substrate in vivo, is higher.
Links to other databases: BRENDA, EXPASY, GTD, KEGG, MetaCyc, PDB, CAS registry number: 9030-07-3
References:
1.  Ferreira, J.C., Thevelein, J.M., Hohmann, S., Paschoalin, V.M., Trugo, L.C. and Panek, A.D. Trehalose accumulation in mutants of Saccharomyces cerevisiae deleted in the UDPG-dependent trehalose synthase-phosphatase complex. Biochim. Biophys. Acta 1335 (1997) 40–50. [DOI] [PMID: 9133641]
2.  Pan, Y.T., Carroll, J.D. and Elbein, A.D. Trehalose-phosphate synthase of Mycobacterium tuberculosis. Cloning, expression and properties of the recombinant enzyme. Eur. J. Biochem. 269 (2002) 6091–6100. [DOI] [PMID: 12473104]
3.  Asencion Diez, M.D., Demonte, A.M., Syson, K., Arias, D.G., Gorelik, A., Guerrero, S.A., Bornemann, S. and Iglesias, A.A. Allosteric regulation of the partitioning of glucose-1-phosphate between glycogen and trehalose biosynthesis in Mycobacterium tuberculosis. Biochim. Biophys. Acta 1850 (2015) 13–21. [DOI] [PMID: 25277548]
[EC 2.4.1.347 created 2017]
 
 
EC 3.2.1.210     Relevance: 87.3%
Accepted name: endoplasmic reticulum Man8GlcNAc2 1,2-α-mannosidase
Reaction: Man8GlcNAc2-[protein] (isomer 8A1,2,3B1,3) + H2O = Man7GlcNAc2-[protein] (isomer 7A1,2,3B3) + D-mannopyranose
Glossary: Man8GlcNAc2-[protein] (isomer 8A1,2,3B1,3) = {α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc}-N-Asn-[protein]
Man7GlcNAc2-[protein] (isomer 7A1,2,3B3) = {α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc}-N-Asn-[protein]
Other name(s): MNL1 (gene name)
Systematic name: Man8GlcNAc2-[protein] 2-α-mannohydrolase (configuration-inverting)
Comments: In yeast this activity is catalysed by a dedicated enzyme that processes unfolded protein-bound Man8GlcNAc2 N-glycans within the endoplasmic reticulum to Man7GlcNAc2. The exposed α-1,6-linked mannose residue in the product enables the recognition by the YOS9 lectin, targeting the proteins for degradation. In mammalian cells this activity is part of the regular processing of N-glycosylated proteins, and is not associated with protein degradation. It is carried out by EC 3.2.1.113, Golgi mannosyl-oligosaccharide 1,2-α-mannosidase. The names of the isomers listed here are based on a nomenclature system proposed by Prien et al [5].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Nakatsukasa, K., Nishikawa, S., Hosokawa, N., Nagata, K. and Endo, T. Mnl1p, an α -mannosidase-like protein in yeast Saccharomyces cerevisiae, is required for endoplasmic reticulum-associated degradation of glycoproteins. J. Biol. Chem. 276 (2001) 8635–8638. [PMID: 11254655]
2.  Jakob, C.A., Bodmer, D., Spirig, U., Battig, P., Marcil, A., Dignard, D., Bergeron, J.J., Thomas, D.Y. and Aebi, M. Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep. 2 (2001) 423–430. [PMID: 11375935]
3.  Quan, E.M., Kamiya, Y., Kamiya, D., Denic, V., Weibezahn, J., Kato, K. and Weissman, J.S. Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. Mol. Cell 32 (2008) 870–877. [PMID: 19111666]
4.  Clerc, S., Hirsch, C., Oggier, D.M., Deprez, P., Jakob, C., Sommer, T. and Aebi, M. Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. J. Cell Biol. 184 (2009) 159–172. [PMID: 19124653]
5.  Prien, J.M., Ashline, D.J., Lapadula, A.J., Zhang, H. and Reinhold, V.N. The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap MS. J. Am. Soc. Mass Spectrom. 20 (2009) 539–556. [DOI] [PMID: 19181540]
6.  Chantret, I., Kodali, V.P., Lahmouich, C., Harvey, D.J. and Moore, S.E. Endoplasmic reticulum-associated degradation (ERAD) and free oligosaccharide generation in Saccharomyces cerevisiae. J. Biol. Chem. 286 (2011) 41786–41800. [PMID: 21979948]
[EC 3.2.1.210 created 2019]
 
 
EC 3.2.1.163     Relevance: 87.2%
Accepted name: 1,6-α-D-mannosidase
Reaction: Hydrolysis of the (1→6)-linked α-D-mannose residues in α-D-Manp-(1→6)-D-Manp
Systematic name: (1→6)-α-mannosyl α-D-mannohydrolase
Comments: The enzyme is specific for (1→6)-linked mannobiose and has no activity towards any other linkages, or towards p-nitrophenyl-α-D-mannopyranoside or baker’s yeast mannan. It is strongly inhibited by Mn2+ but does not require Ca2+ or any other metal cofactor for activity.
Links to other databases: BRENDA, EXPASY
References:
1.  Athanasopoulos, V.I., Niranjan, K. and Rastall, R.A. The production, purification and characterisation of two novel α-D-mannosidases from Aspergillus phoenicis. Carbohydr. Res. 340 (2005) 609–617. [DOI] [PMID: 15721331]
[EC 3.2.1.163 created 2007]
 
 
EC 2.4.1.140     Relevance: 87.1%
Accepted name: alternansucrase
Reaction: Transfers alternately an α-D-glucosyl residue from sucrose to the 6-position and the 3-position of the non-reducing terminal residue of an α-D-glucan, thus producing a glucan having alternating α-(1→6)- and α-(1→3)-linkages
Other name(s): sucrose-1,6(3)-α-glucan 6(3)-α-glucosyltransferase; sucrose:1,6-, 1,3-α-D-glucan 3-α- and 6-α-D-glucosyltransferase; sucrose:1,6(1,3)-α-D-glucan 6(3)-α-D-glucosyltransferase
Systematic name: sucrose:(1→6)[(1→3)]-α-D-glucan 6(3)-α-D-glucosyltransferase
Comments: The glucansucrases transfer a D-glucosyl residue from sucrose to a glucan chain. They are classified based on the linkage by which they attach the transferred residue. In some cases, in which the enzyme forms more than one linkage type, classification relies on the relative proportion of the linkages that are generated. This enzyme forms both α(1→3) and α(1→6) linkages in approximately equal amounts by alternating the linkage type. cf. EC 2.4.1.125, sucrose—1,6-α-glucan 3(6)-α-glucosyltransferase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 100630-46-4
References:
1.  Cote, G.L. and Robyt, J.F. Isolation and partial characterization of an extracellular glucansucrase from Leuconostoc mesenteroides NRRL B-1355 that synthesizes an alternating (1→6), (1→3)-α-D-glucan. Carbohydr. Res. 101 (1982) 57–74. [DOI] [PMID: 7060056]
2.  Arguello-Morales, M.A., Remaud-Simeon, M., Pizzut, S., Sarcabal, P., Willemot, R. and Monsan, P. Sequence analysis of the gene encoding alternansucrase, a sucrose glucosyltransferase from Leuconostoc mesenteroides NRRL B-1355. FEMS Microbiol. Lett. 182 (2000) 81–85. [PMID: 10612736]
[EC 2.4.1.140 created 1984, modified 2003]
 
 
EC 3.2.1.137     Relevance: 87.1%
Accepted name: mannan exo-1,2-1,6-α-mannosidase
Reaction: Hydrolysis of (1→2)-α-D- and (1→6)-α-D- linkages in yeast mannan, releasing D-mannose
Other name(s): exo-1,2-1,6-α-mannosidase; 1,2-1,6-α-D-mannan D-mannohydrolase
Systematic name: (1→2)-(1→6)-α-D-mannan D-mannohydrolase
Comments: Mannose residues linked α-D-1,3- are also released, but very slowly.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 123175-72-4
References:
1.  Takegawa, K., Miki, S., Jikibara, T. and Iwahara, S. Purification and characterization of exo-α-D-mannosidase from a Cellulomonas sp. Biochim. Biophys. Acta 991 (1989) 431–437.
[EC 3.2.1.137 created 1992]
 
 
EC 2.4.1.183     Relevance: 86.9%
Accepted name: α-1,3-glucan synthase
Reaction: UDP-glucose + [α-D-glucosyl-(1→3)]n = UDP + [α-D-glucosyl-(1→3)]n+1
Other name(s): uridine diphosphoglucose-1,3-α-glucan glucosyltransferase; 1,3-α-D-glucan synthase; UDP-glucose:α-D-(1-3)-glucan 3-α-D-glucosyltransferase
Systematic name: UDP-glucose:α-D-(1→3)-glucan 3-α-D-glucosyltransferase
Comments: A glucan primer is needed to begin the reaction, which brings about elongation of the glucan chains.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, CAS registry number: 113478-38-9
References:
1.  Andoh, M., Yamashita, Y., Shigeoka, T., Hanada, N. and Takehara, T. [Extension of the length of glucan chain by 1,3-α-D-glucansynthase from Streptococcus mutans serotype.] Koku Eisei Gakkai Zasshi 37 (1987) 516–517.
[EC 2.4.1.183 created 1990]
 
 
EC 1.14.19.47     Relevance: 86.8%
Accepted name: acyl-lipid (9-3)-desaturase
Reaction: (1) an α-linolenoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a stearidonoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
(2) a linoleoyl-[glycerolipid] + 2 ferrocytochrome b5 + O2 + 2 H+ = a γ-linolenoyl-[glycerolipid] + 2 ferricytochrome b5 + 2 H2O
Glossary: stearidonic acid = (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoic acid
Other name(s): DES6 (gene name); acyl-lipid 6-desaturase; acyl-lipid Δ6-desaturase; Δ6-desaturase (ambiguous)
Systematic name: Δ9 acyl-[glycerolipid],ferrocytochrome b5:oxygen oxidoreductase (6,7-cis-dehydrogenating)
Comments: The enzyme, characterized from the moss Physcomitrella patens and the plant Borago officinalis (borage), introduces a cis double bond at carbon 6 of several acyl-lipids that contain an existing Δ9 cis double bond. The enzyme contains a cytochrome b5 domain that acts as the electron donor for the active site of the desaturase.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc
References:
1.  Sayanova, O., Smith, M.A., Lapinskas, P., Stobart, A.K., Dobson, G., Christie, W.W., Shewry, P.R. and Napier, J.A. Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of Δ6-desaturated fatty acids in transgenic tobacco. Proc. Natl. Acad. Sci. USA 94 (1997) 4211–4216. [DOI] [PMID: 9108131]
2.  Girke, T., Schmidt, H., Zähringer, U., Reski, R. and Heinz, E. Identification of a novel Δ6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens. Plant J. 15 (1998) 39–48. [DOI] [PMID: 9744093]
[EC 1.14.19.47 created 2015]
 
 
EC 2.4.1.245     Relevance: 86.4%
Accepted name: α,α-trehalose synthase
Reaction: NDP-α-D-glucose + D-glucose = α,α-trehalose + NDP
Glossary: NDP = a nucleoside diphosphate
Other name(s): trehalose synthase; trehalose synthetase; UDP-glucose:glucose 1-glucosyltransferase; TreT; PhGT; ADP-glucose:D-glucose 1-α-D-glucosyltransferase
Systematic name: NDP-α-D-glucose:D-glucose 1-α-D-glucosyltransferase
Comments: Requires Mg2+ for maximal activity [1]. The enzyme-catalysed reaction is reversible [1]. In the reverse direction to that shown above, the enzyme is specific for α,α-trehalose as substrate, as it cannot use α- or β-paranitrophenyl glucosides, maltose, sucrose, lactose or cellobiose [1]. While the enzymes from the thermophilic bacterium Rubrobacter xylanophilus and the hyperthermophilic archaeon Pyrococcus horikoshii can use ADP-, UDP- and GDP-α-D-glucose to the same extent [2,3], that from the hyperthermophilic archaeon Thermococcus litoralis has a marked preference for ADP-α-D-glucose [1] and that from the hyperthermophilic archaeon Thermoproteus tenax has a marked preference for UDP-α-D-glucose [4].
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB
References:
1.  Qu, Q., Lee, S.J. and Boos, W. TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. J. Biol. Chem. 279 (2004) 47890–47897. [DOI] [PMID: 15364950]
2.  Ryu, S.I., Park, C.S., Cha, J., Woo, E.J. and Lee, S.B. A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii: molecular cloning and characterization. Biochem. Biophys. Res. Commun. 329 (2005) 429–436. [DOI] [PMID: 15737605]
3.  Nobre, A., Alarico, S., Fernandes, C., Empadinhas, N. and da Costa, M.S. A unique combination of genetic systems for the synthesis of trehalose in Rubrobacter xylanophilus: properties of a rare actinobacterial TreT. J. Bacteriol. 190 (2008) 7939–7946. [DOI] [PMID: 18835983]
4.  Kouril, T., Zaparty, M., Marrero, J., Brinkmann, H. and Siebers, B. A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax: the unidirectional TreT pathway. Arch. Microbiol. 190 (2008) 355–369. [DOI] [PMID: 18483808]
[EC 2.4.1.245 created 2008, modified 2013]
 
 
EC 3.2.1.84     Relevance: 86.3%
Accepted name: glucan 1,3-α-glucosidase
Reaction: Hydrolysis of terminal (1→3)-α-D-glucosidic links in (1→3)-α-D-glucans
Other name(s): exo-1,3-α-glucanase; glucosidase II; 1,3-α-D-glucan 3-glucohydrolase
Systematic name: 3-α-D-glucan 3-glucohydrolase
Comments: Does not act on nigeran.
Links to other databases: BRENDA, EXPASY, KEGG, MetaCyc, PDB, CAS registry number: 9073-99-8
References:
1.  Zonneveld, B.J.M. A new type of enzyme, and exo-splitting α-1,3 glucanase from non-induced cultures of Aspergillus nidulans. Biochim. Biophys. Acta 258 (1972) 541–547. [DOI] [PMID: 4622000]
[EC 3.2.1.84 created 1972]
 
 


Data © 2001–2024 IUBMB
Web site © 2005–2024 Andrew McDonald